| Jun Ma (Professor) Email:Jun.Ma@unisa.edu.au Home Page UniSA STEM - Mawson Lakes Campus (P1-42) |
About me:
I received my PhD degree in Materials Processing in 2002. I then conducted research as a visiting scholar and postdoc fellow at the Centre for Advanced Materials Technology, The University of Sydney. I joined the University of South Australia as a lecturer in 2007 and was promoted to a full professor in 2019.
2012–2013, The Academic Integrity Officer in the former School of Engineering, UniSA.
2015–2019, The Research Coordinator in the former School of Engineering, UniSA.
2018–2020, Member of the UniSA Academic Board.
I have been elected to the Australian Research Council's (ARC) College of Experts since 2022.
My research focuses on the development of applied functional (nano)composites through processing engineering materials with a range of cost-effective, safe nanomaterials, aiming to engage with industry in the design, development, and manufacturing of advanced composite materials. For example, I researched with a plastic manufacturing plant in New South Wales, which resulted in commissioning of a plastic compounding system in June 2015. As another example, my team developed a novel stretchable strain sensor (‘Highly Sensitive, Wearable, Durable Strain Sensors and Stretchable Conductors Using Graphene/Silicon Rubber Composites’, Advanced Functional Materials, 2016, 42, 7614; an HiCi paper). Thanks to the financial support from ARC (LP160100717), my team was able to translate this strain sensor research into industry by manufacturing a prototype real-time idler condition monitoring system for industrial belt conveyors, which was delivered to a Perth-based industrial partner in 2018.
My research interests and past projects involve (i) the development of composites with specific functionalities through processing engineering materials with cost-effective, safe nanomaterials, and (ii) the investigation of the structure–property relations and fracture mechanisms of these composites. I pioneered the development of (i) polymer/nanosheet composites by molecular entanglements (‘A new strategy to exfoliate silicone rubber/clay nanocomposites’, Macromolecular Rapid Communications, 2005, 26, 830; ‘Interface-tuned epoxy/clay nanocomposites’, Polymer, 2011, 52, 497) and interface bonding (‘A novel method for preparation of disorderly exfoliated epoxy/clay nanocomposite’, Chemistry of Materials, 2004, 16, 757), (ii) cost-effective few-layer graphene (also named graphene nanoplatelets; ‘A facile approach to chemically modified graphene and its polymer nanocomposites’, Advanced Functional Materials, 2012, 22, 2735) for composites processing (‘Graphene Platelets and Their Polymer Composites: Fabrication, Structure, Properties, and Applications’, Advanced Functional Materials, 2018, 28, 1706705), and (iii) facile processing for polymer/nanosheet composites (‘Epoxy/graphene platelets nanocomposites with two levels of interface strength’, Polymer, 2011, 52, 1603; an HiCi paper). My research on these topics has resulted in over 130 refereed journal papers, and a complete, most updated publication list is at Google Scholar.